|
@@ -0,0 +1,152 @@
|
|
|
+diff -urpN busybox-1.16.1/util-linux/hwclock.c busybox-1.16.1-hwclock/util-linux/hwclock.c
|
|
|
+--- busybox-1.16.1/util-linux/hwclock.c 2010-03-19 19:58:07.000000000 -0700
|
|
|
++++ busybox-1.16.1-hwclock/util-linux/hwclock.c 2010-04-14 09:29:37.889208237 -0700
|
|
|
+@@ -109,10 +109,53 @@ static void to_sys_clock(const char **pp
|
|
|
+
|
|
|
+ static void from_sys_clock(const char **pp_rtcname, int utc)
|
|
|
+ {
|
|
|
+-#define TWEAK_USEC 200
|
|
|
+- struct tm tm_time;
|
|
|
++#if 1
|
|
|
+ struct timeval tv;
|
|
|
++ struct tm tm_time;
|
|
|
++ int rtc;
|
|
|
++
|
|
|
++ rtc = rtc_xopen(pp_rtcname, O_WRONLY);
|
|
|
++ gettimeofday(&tv, NULL);
|
|
|
++ /* Prepare tm_time */
|
|
|
++ if (sizeof(time_t) == sizeof(tv.tv_sec)) {
|
|
|
++ if (utc)
|
|
|
++ gmtime_r((time_t*)&tv.tv_sec, &tm_time);
|
|
|
++ else
|
|
|
++ localtime_r((time_t*)&tv.tv_sec, &tm_time);
|
|
|
++ } else {
|
|
|
++ time_t t = tv.tv_sec;
|
|
|
++ if (utc)
|
|
|
++ gmtime_r(&t, &tm_time);
|
|
|
++ else
|
|
|
++ localtime_r(&t, &tm_time);
|
|
|
++ }
|
|
|
++#else
|
|
|
++/* Bloated code which tries to set hw clock with better precision.
|
|
|
++ * On x86, even though code does set hw clock within <1ms of exact
|
|
|
++ * whole seconds, apparently hw clock (at least on some machines)
|
|
|
++ * doesn't reset internal fractional seconds to 0,
|
|
|
++ * making all this a pointless excercise.
|
|
|
++ */
|
|
|
++ /* If we see that we are N usec away from whole second,
|
|
|
++ * we'll sleep for N-ADJ usecs. ADJ corrects for the fact
|
|
|
++ * that CPU is not infinitely fast.
|
|
|
++ * On infinitely fast CPU, next wakeup would be
|
|
|
++ * on (exactly_next_whole_second - ADJ). On real CPUs,
|
|
|
++ * this difference between current time and whole second
|
|
|
++ * is less than ADJ (assuming system isn't heavily loaded).
|
|
|
++ */
|
|
|
++ /* Small value of 256us gives very precise sync for 2+ GHz CPUs.
|
|
|
++ * Slower CPUs will fail to sync and will go to bigger
|
|
|
++ * ADJ values. qemu-emulated armv4tl with ~100 MHz
|
|
|
++ * performance ends up using ADJ ~= 4*1024 and it takes
|
|
|
++ * 2+ secs (2 tries with successively larger ADJ)
|
|
|
++ * to sync. Even straced one on the same qemu (very slow)
|
|
|
++ * takes only 4 tries.
|
|
|
++ */
|
|
|
++#define TWEAK_USEC 256
|
|
|
+ unsigned adj = TWEAK_USEC;
|
|
|
++ struct tm tm_time;
|
|
|
++ struct timeval tv;
|
|
|
+ int rtc = rtc_xopen(pp_rtcname, O_WRONLY);
|
|
|
+
|
|
|
+ /* Try to catch the moment when whole second is close */
|
|
|
+@@ -124,55 +167,64 @@ static void from_sys_clock(const char **
|
|
|
+
|
|
|
+ t = tv.tv_sec;
|
|
|
+ rem_usec = 1000000 - tv.tv_usec;
|
|
|
+- if (rem_usec < 1024) {
|
|
|
+- /* Less than 1ms to next second. Good enough */
|
|
|
++ if (rem_usec < adj) {
|
|
|
++ /* Close enough */
|
|
|
+ small_rem:
|
|
|
+ t++;
|
|
|
+ }
|
|
|
+
|
|
|
+- /* Prepare tm */
|
|
|
++ /* Prepare tm_time from t */
|
|
|
+ if (utc)
|
|
|
+ gmtime_r(&t, &tm_time); /* may read /etc/xxx (it takes time) */
|
|
|
+ else
|
|
|
+ localtime_r(&t, &tm_time); /* same */
|
|
|
+- tm_time.tm_isdst = 0;
|
|
|
++
|
|
|
++ if (adj >= 32*1024) {
|
|
|
++ break; /* 32 ms diff and still no luck?? give up trying to sync */
|
|
|
++ }
|
|
|
+
|
|
|
+ /* gmtime/localtime took some time, re-get cur time */
|
|
|
+ gettimeofday(&tv, NULL);
|
|
|
+
|
|
|
+- if (tv.tv_sec < t /* may happen if rem_usec was < 1024 */
|
|
|
+- || (tv.tv_sec == t && tv.tv_usec < 1024)
|
|
|
++ if (tv.tv_sec < t /* we are still in old second */
|
|
|
++ || (tv.tv_sec == t && tv.tv_usec < adj) /* not too far into next second */
|
|
|
+ ) {
|
|
|
+- /* We are not too far into next second. Good. */
|
|
|
+- break;
|
|
|
+- }
|
|
|
+- adj += 32; /* 2^(10-5) = 2^5 = 32 iterations max */
|
|
|
+- if (adj >= 1024) {
|
|
|
+- /* Give up trying to sync */
|
|
|
+- break;
|
|
|
++ break; /* good, we are in sync! */
|
|
|
+ }
|
|
|
+
|
|
|
+- /* Try to sync up by sleeping */
|
|
|
+ rem_usec = 1000000 - tv.tv_usec;
|
|
|
+- if (rem_usec < 1024) {
|
|
|
+- goto small_rem; /* already close, don't sleep */
|
|
|
++ if (rem_usec < adj) {
|
|
|
++ t = tv.tv_sec;
|
|
|
++ goto small_rem; /* already close to next sec, don't sleep */
|
|
|
+ }
|
|
|
+- /* Need to sleep.
|
|
|
+- * Note that small adj on slow processors can make us
|
|
|
+- * to always overshoot tv.tv_usec < 1024 check on next
|
|
|
+- * iteration. That's why adj is increased on each iteration.
|
|
|
+- * This also allows it to be reused as a loop limiter.
|
|
|
+- */
|
|
|
+- usleep(rem_usec - adj);
|
|
|
+- }
|
|
|
+
|
|
|
+- xioctl(rtc, RTC_SET_TIME, &tm_time);
|
|
|
++ /* Try to sync up by sleeping */
|
|
|
++ usleep(rem_usec - adj);
|
|
|
+
|
|
|
+- /* Debug aid to find "good" TWEAK_USEC.
|
|
|
++ /* Jump to 1ms diff, then increase fast (x2): EVERY loop
|
|
|
++ * takes ~1 sec, people won't like slowly converging code here!
|
|
|
++ */
|
|
|
++ //bb_error_msg("adj:%d tv.tv_usec:%d", adj, (int)tv.tv_usec);
|
|
|
++ if (adj < 512)
|
|
|
++ adj = 512;
|
|
|
++ /* ... and if last "overshoot" does not look insanely big,
|
|
|
++ * just use it as adj increment. This makes convergence faster.
|
|
|
++ */
|
|
|
++ if (tv.tv_usec < adj * 8) {
|
|
|
++ adj += tv.tv_usec;
|
|
|
++ continue;
|
|
|
++ }
|
|
|
++ adj *= 2;
|
|
|
++ }
|
|
|
++ /* Debug aid to find "optimal" TWEAK_USEC with nearly exact sync.
|
|
|
+ * Look for a value which makes tv_usec close to 999999 or 0.
|
|
|
+- * for 2.20GHz Intel Core 2: TWEAK_USEC ~= 200
|
|
|
++ * For 2.20GHz Intel Core 2: optimal TWEAK_USEC ~= 200
|
|
|
+ */
|
|
|
+- //bb_error_msg("tv.tv_usec:%d adj:%d", (int)tv.tv_usec, adj);
|
|
|
++ //bb_error_msg("tv.tv_usec:%d", (int)tv.tv_usec);
|
|
|
++#endif
|
|
|
++
|
|
|
++ tm_time.tm_isdst = 0;
|
|
|
++ xioctl(rtc, RTC_SET_TIME, &tm_time);
|
|
|
+
|
|
|
+ if (ENABLE_FEATURE_CLEAN_UP)
|
|
|
+ close(rtc);
|